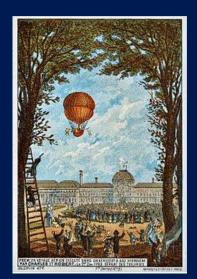

UNE NOUVELLE MOLÉCULE... POURTANT ANCIENNE!

Découverte expérimentale de l'hydrogène au XVIème siècle par Paracelse. Les anglais Boyle (XVIIème) puis Cavendish (1766) isolent puis approfondissent les connaissances sur cet « air inflammable ». On doit au français Lavoisier (1781) l'appellation hydrogène et la découverte de la synthèse de l'eau ($H_2 + O_2 \rightarrow H_2O$).


Dès la révolution industrielle (XIXème) et l'essor du charbon, l'hydrogène va être largement consommé sous forme de gaz de ville* (sous-produit de la production du coke) pour l'éclairage urbain puis pénétrer progressivement dans les immeubles.

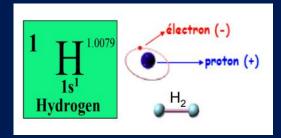
Le transport aérien bénéficiera également de l'apport de l'H₂ comme gaz de sustentation depuis le premier ballon inventé par le français Charles (1783) jusqu'au drame du dirigeable Hindenburg (1937).

L'industrie s'intéressa également rapidement à cette molécule pour produire le premier engrais azoté industriel (procédé Haber-Bosch $-3 H_2 + N_2 \rightarrow 2 NH_3$).

Antoine Lavoisier (1743 – 1794)

1^{er} vol d'un ballon à hydrogène en décembre 1783 – Jardin des Tuileries - Paris)

 $^{^{\}ast}$ Composition volumique du gaz de ville : 50% $\rm H_2$ / 32% $\rm CH_4$ / 8% CO / 10% autres molécules


FAISONS MIEUX CONNAISSANCE AVEC L'HYDROGÈNE

C'est l'élément chimique le plus abondant de l'univers (75%) mais est peu présent dans la croute terrestre (<0,3%). En revanche, il existe en quantités gigantesques dans les océans et fleuves sous forme d'eau et dans une moindre mesure dans les énergies fossiles ou la matière organique (biomasse, matière vivante).

Ses propriétés physico-chimiques sont hors normes :

- C'est la plus petite molécule existante
- Une faible densité tant gazeuse que liquide (14 fois plus léger que l'air)
- Une forte résistance à la liquéfaction (-253°C)
- Un pouvoir calorifique massique élevé (1kg d'H₂ > 3l d'essence) mais volumique faible
- C'est un gaz incolore, non toxique et inodore mais très inflammable avec une flamme presque invisible à l'œil nu

Sans oublier son potentiel énergétique quasi infini en cas de réaction de fusion nucléaire (projet international ITER à Cadarache $-1g^*$ d' $H_2 = 8T$ de pétrole)

Atome et molécule d'hydrogène

Une molécule très énergétique

^{*} Mélange des isotopes deutérium et tritium de l'hydrogène

UN PRODUIT « SUSCEPTIBLE » À MANIER AVEC PRÉCAUTION

Les principaux risques liés à l'utilisation d'hydrogène sont :

• L'explosion mais :

- Prise en compte du risque lors de la conception, l'entretien et l'exploitation des installations
- Matériaux compatibles avec l'hydrogène parfaitement connus et maîtrisés
- Equipements sous pression réglementairement et périodiquement contrôlés
- Techniques de détection de fuites variées et performantes permettant la mise en sécurité automatique des installations
- Dilution aisée dans l'atmosphère réduisant fortement le risque d'accumulation
- L'inflammation (avec une flamme peu visible) mais :
 - Détection possible avec des détecteurs de flamme UV
 - ❖ Facilité d'extinction par coupure de l'arrivée d'hydrogène (en cas de fuite, laisser brûler plutôt que d'essayer d'éteindre la flamme) → analogie avec le gaz naturel
- Des guides réglementaires (INERIS) et de bonnes pratiques (France Hydrogène) basés sur des retours d'expérience depuis plusieurs décennies

Exemples de guides diffusés par l'INERIS

LES 50 NUANCES... D'HYDROGÈNE

Aujourd'hui, l'hydrogène est essentiellement produit par l'homme. De son procédé de production dépend sa couleur :

- Noire = gazéification du charbon
- Grise = vaporéformage du gaz naturel
- ❖ Bleue = idem ci-dessus avec récupération du CO₂ pour usage ou stockage (CCUS)
- Jaune : électrolyse de l'eau avec l'électricité du réseau électrique français
- Verte : électrolyse avec l'électricité d'origine renouvelable
- ***** ...
- Blanche : extraction minière du sous-sol

Principaux débouchés de l'hydrogène aujourd'hui :

- ❖ La désulfurisation des essences pour le transport (+40% en 10 ans)
- ❖ La production d'ammoniac (NH₃) pour les engrais
- ❖ La production de méthanol (CH₃OH) pour l'industrie

Production mondiale de 70MT/an obtenue à 96% à partir d'énergies fossiles

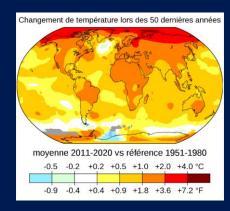
Intensité carbone de quelques procédés (kg CO₂/kg H₂) :

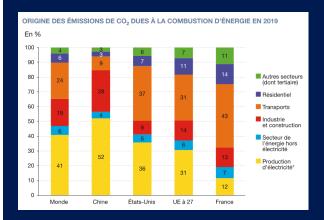
Charbon: 22 Gaz naturel: 13

Gaz naturel avec CCUS: 6 Electricité ENR: 0,5 à 3

* Emissions directe et indirecte

UN ACTEUR INCONTOURNABLE DE LA TRANSITION ÉNERGÉTIQUE


Dans un contexte de réchauffement climatique accéléré, l'usage des énergies fossiles doit être fortement réduit ou modifié pour atteindre l'objectif d'augmentation maîtrisée de T < à +2°C d'ici 2050.


L'H₂ permettra de partiellement décarboner, directement ou indirectement, les grands émetteurs de CO₂ :

- Industries
- Energies
- Mobilités lourdes

Grâce à :

- L'absence de génération de CO₂ lors de son usage (combustion, pile à combustible)
- L'existence de plusieurs procédés de production d'hydrogène à faible intensité carbone (électrolyse, vaporéformage avec CCUS, gazéification de biomasse)
- La conversion réversible de l'électricité bas carbone ou décarbonée en H₂
- L'accroissement significatif des capacités de production d'électricité d'origine renouvelable et la relance du programme nucléaire français
- La combinaison vertueuse du CO₂ d'origine industrielle et de l'H₂ décarboné pour produire de nouvelles énergies ou carburants (procédés Power to X → e-méthane, ecarburants)

LES GRANDS DÉFIS POUR L'HYDROGÈNE

Le développement massif des usages de l'H₂, même s'il est attendu, devra faire face à plusieurs défis importants.

L'acceptabilité sociétale (syndrome Hindenburg et NIMBY) :

Contrôle des installations par les DREAL, communication auprès du grand public, formation des intervenants aux risques H₂

La stabilité du prix des énergies (électricité, gaz, biomasse) :

Hyper électro-intensivité de l'H₂, politique européenne de fixation du prix de l'électricité, rééquilibrage des flux internationaux de gaz (GNL) suite au conflit Russie – Ukraine, conflits d'usage

Le choc d'investissement :

Construction d'usines géantes de production d'équipements, adaptation des capacités de transport du réseau RTE, déploiement de réseaux maillés de production / stockage / distribution, plan massif d'aide à l'investissement des gouvernements (ADEME en France)

L'intégration réussie des ENR (solaire, éolien) dans le mix électrique français :

Gestion de l'intermittence des ENR (stockage saisonnier de l'H₂ ou des e-carburants, réinjection d'H₂ ou de e-méthane dans les réseaux de gaz)

La réduction du coût d'acheminement :

Massification du transport par hydrogénoduc (gaz) ou par hydrogènier (liquide), transport routier à haute pression ou liquide, conversion réversible en ammoniac (NH₃) ou autres vecteurs de transport

Evolution et prévision d'évolution du prix de l'électricité (baseload)

1er hydrogènier Kawasaki, Shell Japan

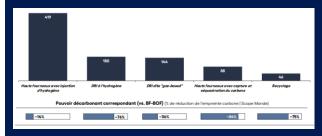
7

POUR QUELS USAGES?

En tant que vecteur énergétique à basse intensité carbone, l'hydrogène ou ses dérivés se développera préférentiellement dans les domaines à forte empreinte carbone. Le coût compétitif de l'hydrogène livré sera un critère important d'accélération de déploiement.

L'industrie :

- Production d'ammoniac (NH₃): 25% de la consommation mondiale d'H₂. Substitution du gaz naturel par l'H₂ bas carbone. Baisse possible des émissions de CO₂ de 75% (-2,3kg CO₂/kg NH₃). Procédé au gaz avec CCUS également pertinent
- Production de méthanol (CH₃OH): 10% de la consommation mondiale d'H₂. Baisse possible des émissions de CO₂ de 70% (-2,3kg CO₂/kg NH₃)
- Sidérurgie: procédé DRI (Direct Reduced Iron). Compétition entre procédés DRI au gaz, à l'H₂ et procédé classique avec CCUS


L'énergie:

- Raffinage : c'est le plus grand consommateur d'hydrogène (33%). Compétition entre H₂ bas carbone et vaporéformage du gaz avec CCUS
- Réseaux de distribution de gaz : teneur possible en H₂ de 6 à 20% mais réduction limitée des émissions finale de CO₂ (-3,5%)

La mobilité lourde : usage direct de l'H₂ dans les moteurs électriques (pile à combustible) ou thermiques (combustion) ou indirect sous forme de e-carburant (combustion)

- Camions : cible du segment des poids lourds > 19T
- Trains : les axes non électrifiés sont un axe de développement
- Bateaux / avions : priorité donnée aux e-carburants

Production d'acier - Coût d'abattement du CO_2 à horizon 2030 (\$ / T CO_2)

Camion Hyundai Xcient

LE MARCHE DE L'HYDROGÈNE EN FRANCE

POUR QUELS USAGES?

Industrie

Un vecteur de décarbonation

Objectifs de la filière en 2030. 342 000 T d'H2 décarboné pour :

Mobilité

En circulation en 2020

Véhicules

Objectifs à 2028 de la Programmation Pluriannuelle de l'Energie · 20 000 à 50 000 véhicules utilitaires légers · 800 à 2000 véhicules lourds

Développement de la production d'hydrogène pour l'industrie et les nouveaux usages ● H₂ décarboné (5%) H₂ décarboné (52%) ■ H₂ carboné* (95%) H₂ carboné* (48%) 2030 700 000 TH, sur un total de 1 345 000 T hydrogène issu de sources fossiles

2030 - OBJECTIFS de la Stratégie nationale

pour le développement de l'hydrogène décarboné en France

UNE PRODUCTION ACTUELLE ENCORE LARGEMENT CARBONÉE DÉDIÉE PRESQUE EXCLUSIVEMENT À L'INDUSTRIE

MAIS

UN RÉÉQUILIBRAGE IMPORTANT ATTENDU POUR 2030 AVEC UNE ACCÉLÉRATION DES USAGES DÉCARBONÉS DE LA MOBILITÉ

Enerlis

Occitanie

Siège social :

77, rue Marcel Dassault 92100 Boulogne-Billancourt

+33 (0)1 70 95 00 80 contact@enerlis.fr

13 agences Enerlis en France & DROM : Enerlis

Ile-de-France Grand Est Hauts-de-Enerlis

Enerlis Enerlis Bretagne Atlantique

Enerlis

Enerlis La Réunion

Enerlis Nouvelle-Aquitaine

Bordeaux

Enerlis Rhône-Alpes

Caraïbes

Enerlis Nouvelle-Aquitaine

GreenHy by Enerlis Sud

Marseille

Icauna by Enerlis Grand Ouest

www.enerlis.fr **600**